Profiles of Faculty

[Program in Biological System Sciences: Master's and Doctoral Course]

For more information, please contact professors freely.

Applicants are requested to consult with the prospective professors about future research plans before the application

Field	Position	Name • Subject(Class) Email	Outline of Research	Research Topics
Applied Life Science	Prof.	Kyoko INAGAKI- OHARA Immunology and Cell Biology k-inagaki@pu-hiroshima.ac.jp	Leptin receptor signaling exerts a pleiotropic effect on regulation of food intake and energy expenditure, immunity and hematopoiesis, regulating cell differentiation, proliferation and polarity. Leptin is produced in a variety of tissues including adipose tissue and gastrointestine. We explore the significance of leptin receptor signaling in the development of inflammatory diseases and tumorigeneis in the gastrointestine.	 Determine the role of leptin receptor signaling in cell differentiation and proliferation of epithelial cells in the gastrointestine. Clarify the role of leptin receptor signaling in modulation of the immune system supporting inflammation and tumorigenesis in the gastrointestine.
	Prof.	Shinji IHARA Bioresource chemistry and Extracellular matrix engineering ihara@pu-hiroshima.ac.jp	Damage to the basement membrane contributes to skin aging. Using the visualized basement membrane of the nematode <i>C. elegans</i> , we will analyze the molecular mechanism of built up of basement membrane, search for biological resources which suppress the damage of the basement membrane, and analyze its action mechanism.	 Visualization of Basement Membranes using the <i>C. elegans</i> Analysis of the localization mechanism of basement membrane proteins <i>in vivo</i> Search for biological resources that suppress damage of basement membrane Study on the protein folding in endoplasmic reticulum Study of molecular mechanisms that maintain organ size
	Prof.	Shinjiro OGITA Advanced Plant Cell, Tissue and Organ Culture ogita@pu-hiroshima.ac.jp	We focus on the application of plant cell, tissue and organ culture (PCTOC) methodologies to all research and development areas of traditional and modern plant biotechnology. A high frequent regulation of plant stem cell development during PCTOC is the most important concept of this subject.	 Plant Stem Cell Plant cell, tissue and organ culture Transformation Cell manipulation Histochemical analysis Metabolic engineering

Field	Position	Name • Subject(Class) Email	Outline of Research	Research Topics
Applied Life Science	Prof.	Yasukazu SAITOH Bioscience and Biotechnology for Cell Function Control ysaito@pu [.] hiroshima.ac.jp	Studies on control of aging, cancer and various disorders through the development of controllable methods/ biomaterials against stress-induced cell injuries/cell death.	 Development of controllable methods/ biomaterials against stress-induced cell injuries/cell death. Anti-aging through senolysis and senostatics. Development of preferential anti-cancer biomaterials to cancer cells over normal cells by intracellular redox control. Elucidation of vitamin C transport system and its regulatory mechanisms
	Prof.	Toshifumi SAKAGUCHI Microbiology sakaguchi@pu-hiroshima.ac.jp	Development and creation of biomaterials and biofunctions based on biotechnology and genetic engineering by using microbes for bioremediation and eco-monitoring. Fundamental researches on environmental microorganisms, extremophiles and biomineralization toward technological application.	 Development of biomaterials and biofunctions for bioremediation. Development of ecomonitoring systems, biodevices, biosensors by microfabrication techniques. Synthesis of bionano-particles based on biomineralization. Fundamental researches on biomineralization of metalloidsand metals. Search and isolation of functional microbes and extremophiles toward technological applications.
	Prof.	Hiroshi SUGA Bioinformatics and Evolutionary Genomics hsuga@pu-hiroshima.ac.jp	What happened in the genome when multicellular organisms evolved from a single-cellular organism hundreds of million years ago? Using bioinformatics-based approach, we analyze the genome data of various organisms. Based on the hypotheses drawn from these "dry" analyses, we also perform "wet" approaches using model organisms that are considered to be the "direct unicellular ancestor" of animals.	 Theoretical study on the evolution of multicellularity by comparative genomics approaches Introduction of systems biology into evolutionary study using transcriptomics and proteomics Development of model organisms (and molecular techniques) for the study of multicellularity evolution Functional analysis of cell-cell communication tools already equipped in unicellular organisms Functional analysis of cell adhesion molecules found in our unicellular models Evolve" multicellularity in the lab
	Prof.	Toshiki YAGI Structural Biology of Supramolecule yagit@pu-hiroshima.ac.jp	To understand the molecular mechanism of ciliary and flagellar movements, we have analyzed the motility of <i>Chlamydomonas</i> mutants lacking specific axonemal components. Our research focus is ciliary motor proteins, dynein.	 Functional analyses of cilia dyneins. Regulatory mechanism of dynein motor activity in ciliary movement. Molecular mechanism of cilia assembly. X-ray structural analysis of cilia dyneiin.

Field	Position	Name • Subject(Class) Email	Outline of Research	Research Topics
fe Science	Assoc. Prof.	Yasuyuki ABE Functional Anatomy abe@pu-hiroshima.ac.jp	Our research is the establishment of the assisted reproductive techniques (ARTs) such as cryopreservation and in vitro culture of eggs (oocytes and embryos) in mammals (mouse, bovine, canine, etc.). ARTs have contributed not only to human infertility treatment and animal production including domestic and experimental animals, but also to development of biomedical sciences.	 Cryopreservation of oocytes and embryos in mammals In vitro culture of non-growing oocytes (follicle) in mammals Identification of sperm factor for fertilization and embryo development in bull Influence of chronic radiation exposure associated with the Fukushima Daiichi Nuclear Plant on bovine oocytes
Applied Li	Assoc. Prof.	Yasuhisa YAMASHITA Molecular Physiology yamayasu@pu-hiroshima.ac.jp	We conduct our research to elucidate the basic mechanism of oocyte maturation during follicular development and ovulation. Furthermore, we also study to apply the fundamental insight to prevention of reproductive disorder in animal, establishment of novel method of <i>in vitro</i> maturation in domestic animal, and assisted reproductive technique of human.	 Analysis of secretory mechanism of EGF- like factor in granolosa/cumulus cells during follicular development and ovulation process. Analysis of biosynthesis of steroid hormone in granulosa/cumulus cells during follicular development and ovulation process. Search of novel factor to induce oocyte maturation during follicular development and ovulation process. Kinetic change of maturation inducing maker of oocyte inovulation process using ovarian pick-up (OPU) technique.

Field	Position	Name • Subject(Class) Email	Outline of Research	Research Topics
Biofunctional Science and Technology	Prof.	Tadayuki IIDA Epidemiology of Health Science for Local Residents (DC) iida@pu-hiroshima.ac.jp	The main purpose of my study is to take preventive measures for health promotion and extension of healthy life expectancy. Studies mainly focus on the epidemiological elucidation of the pathogenic factors of lifestyle-related diseases (arteriosclerosis, osteoporosis, cancer, etc.), the proposal of prevention method of dementia, an early detection by change of physiological function due to psychological stress.	 Study on prevention-related of lifestyle diseases and dementia Study on health maintenance and promotion by food intervention Study on psychological stress and stress response
	Prof.	Takeya ONO Science of Disabilities (DC) ono@pu-hiroshima.ac.jp	Study of the influence of disease and/or disuse syndromes on impairments. Research on the theory and methods of treatment that contribute to the improvement of motor deficits and facilitate health promotion.	 To investigate the prevention and restoration of impairments. To investigate the prevention and restoration of muscle elasticity in joint contractures. To investigate the influence of the duration of an application of a tourniquet to induce skeletal muscle atrophy. To investigate the influence of spinal cord injury, peripheral nerve injury and joint fixation on muscle elasticity in contractures.
	Prof.	Shusaku KANAI Kinesiology and motor control (DC) kanai@pu ⁻ hiroshima.ac.jp	Studies on pathological motor control and traditional physiotherapy. Studies on human motion analysis theory and practice.	 Effects of traditional physical agents and therapeutic exercise Disability science by observational motion analysis Musculoskeletal motor control Development and validation for training equipment and welfare device
	Prof.	Yasuhiko KITADAI Molecular Pathology and Oncology (DC) kitadai@pu-hiroshima.ac.jp	Previous studies have indicated that a large number of genetic and epigenetic alterations in oncogenes and tumor suppressor genes determine the multi-step process of colorectal carcinogenesis. However, cancer tissue consists of stroma, and tumor growth is determined not only by tumor cells themselves but also by stromal cells. The purpose of our study is to know molecular mechanisms of cancer metastasis using mouse orthotopic implantation models.	 The current themes are: to clarify the importance of angiogenesis and lymphangiogenesis on cancer metastasis. to clarify the role of cancer-stromal interaction to induce EMT at invasive edge. to evaluate the mechanisms how MSC enhances metastatic ability of cancer cells.

Field	Position	Name • Subject(Class) Email	Outline of Research	Research Topics
Food Resource Science	Prof.	Takashi OKU Molecular Plant Pathology toku@pu-hiroshima.ac.jp	Molecular genetics of pathogenicity and host plant resistance to <i>Xanthomonas oryzae</i> pv. <i>oryzae</i>	 Analysis of Type III secretion proteins Molecular Biology in rice plant resistance Physiologic races <i>in Xanthomonas oryzae</i> pv. <i>oryzae</i>
	Prof.	Hiroyuki KOHMURA Vegetable Crop Science kohmura@pu-hiroshima.ac.jp	Development and improvement of cultivation method of vegetables. Especially, we investigate the effect of environmental stress to vegetable plant growth, yield, taste quality and ingredients.	 Long-term harvesting method of asparagus (Green, white, purple, pink). Forcing culture of asparagus. Bag culture method of tomato. Hiroshima specialty vegetables. (Summer autumn strawberry, tubers and roots, Leafy vegetables etc.) Medicinal herbs.
	Prof.	Tadashi GOMI Ecology of Changing Environment gomi@pu-hiroshima.ac.jp	We study adaptation of insects to environmental change, especially global warming. We investigate patterns and mechanisms of the shift in insect life cycles in response to climate change.	 Effects of climate change on life-history traits of insects, such as photoperiodic responses for diapause induction and developmental rates. Seasonal adaptation of insects and evolution of their life cycles.
	Prof.	Shota TANIMOTO Science of Food Processing and Preservation (DC) s-tanimoto@pu-hiroshima.ac.jp	We study changes in chemical component in food, primarily fishery products during storage and processing. We also investigate the preservation of food quality during them. In, addition, we try to improve gel quality of fish meat products by using subsidiary materials.	 Study on quality change of food products during storage and processing. Development of preservation method for food. Improving the quality of fish meat gel
	Prof.	PARK SOO YOUNG Agricultural management park@pu-hiroshima.ac.jp	To solve problems of agricultural management, we have been studying a method of information processing based on data, and neuromarketing by measuring cerebral blood flow. Furthermore, we are interested in research on the development, diffusion and issues of smart agriculture from a business perspective.	 Data science Neuromarketing Smart agriculture

Field	Position	Name • Subject(Class) Email	Outline of Research	Research Topics
	Prof.	Kenji FUKUNAGA Applied Plant Science fukunaga@pu-hiroshima.ac.jp	Conservation, evaluation and utilization of plant genetic resources. 1) Evaluation of genetic diversity of landraces and wild relatives based on agronomic traits and DNA markers. 2) Isolation and analysis of the genes conferring agronomic traits and analysis of mechanism for diversification of cultivated plants. 3) Development of DNA markers for cultivar identification	 Analysis of genetic diversity of Japanese landraces of foxtail millet based on agronomic traits and DNA markers. Comparison of mechanisms causing waxy variants among cereal species. Isolation and analysis of rice gene homologs from foxtail millet. Mapping and isolation of morphogenesis genes in cereals Development of retrotransposon-based markers for cultivar identification
Ð	Assoc. Prof.	Norio NAGAO Cell Biochemistry and Function nagao@pu [.] hiroshima.ac.jp	Chemical and Physiochemical Analysis of Food Products.	• Measurement of Total Antioxidant Capacity from colored beans.
Food Resource Scien	Assoc. Prof.	Taizo MASUDA Environmental Plant Nutrition and Bio-resources Recycling (MC) taizo@pu-hiroshima.ac.jp	Physiological and Biochemical Analysis of Plant Nutritional Mechanism, Effective Use of Nutrients and Environmental Conservation based on the Nutrient Recycle	 Analysis of leafy vegetable growth promotion by the oyster shell application Investigation of effective use of organic waste on the agricultural lands Material flow analysis of heavy metals on the bio-energy plant production with sludge fertilizer application in abandoned farmlands
	Assoc. Prof.	Ryota MABUCHI Food Evaluation mabuchi@pu-hiroshima.ac.jp	food quality evaluation by foodomics	 Fundamental studies on food quality evaluation based on metabolome analysis Applied research on fish quality assessment based on food metabolomics
	Assoc. Prof.	Wakayo MURATA Farming Systems murataw@pu-hiroshima.ac.jp	We study the difference of food production in the world from aspect of technology, policy and social condition.	 Comparative Farming Systems and Agricultural Policy Analysis of Food Trade and Management Women and Development

Field	Position	Name • Subject(Class) Email	Outline of Research	Research Topics
Food Resource Science	Assoc. Prof.	Yukihiro YAMAMOTO Applied Lipid Chemistry yyamamoto@pu- hiroshima.ac.jp	Food chemistry, especially based on enzyme and lipid chemistry. For example, to produce physiologically functional materials using enzymes or study on development of technique which enable to improve oxidation stability of oils and fats.	 Preparation of functional lipids using enzymatic esterification or acidolysis. Effects of emulsifiers on oxidation stability of emulsified oils and fats. Utilization of unused resources.
	Assoc. Prof.	Tomoyuki YOSHINO Food Process Engineering yoshino@pu-hiroshima.ac.jp	Study of food processing for functional ingredients and preservation. Development of biodegradable materials made from food by product. Microscopic study of interaction between cell and biomaterials.	 Development of functional foods made from agricultural products. Development of low-cost biodegradable materials from corn protein. Study of interaction between LDL and receptor on cell membrane by scanning probe microscopy (SPM). Imaging of the chromosome surface by SPM.
	Lecturer	Yusuke TANIGAKI Biological rhythm for control plant growth (MC) yu-tanigaki@pu- hiroshima.ac.jp	We focus on the plant circadian clock for elucidation of growth instability of crops. The plant circadian clock with both stability and instability is analyzed from omics data to elucidate the relationship between growth and plant circadian clock. Then, we develop crop growth control technology.	 A study on the effects of plant circadian clock synchronization and non- synchronization on growth in crop communities Study on stability and flexibility of plant circadian clock

Field	Position	Name • Subject(Class) Email	Outline of Research	Research Topics
	Prof.	Toshihito OHTAKE Environmental Material Chemistry ohtake@pu ⁻ hiroshima.ac.jp	We will need novel ideas based on a new principle to design for next generated solar cell that is far superior to usual one for a conversion efficiency. We have studied quantum dots solar cells by utilizing a quantum size effect, and plasmonic solar cells by using a surface plasmon surface.	 Quantum dots solar cells. Plasmonic solar cells. Materials design of perovskite semiconductors endowed with photo functionality. Investigation of strongly correlated electron system as endowed with photo functionality in metal oxides. Development of flexible solar cells at lightness and filminess.
Environmental Science	Prof.	Kazuyuki NISHIMURA Environmental Health Engineering on Sound Material-cycle Society nishimura@pu-hiroshima.ac.jp	In this subject, the treatment technology and the material cycles system for organic wastes and wastewater are developed and assessed. Moreover, risk management of recycled products is researched.	 Developing waste and/or wastewater treatment technologies designed to minimize environmental loads. Developing material recycling technologies and systems. Developing assessment technology of health risks.
	Prof.	Atsushi HASHIMOTO Environmental Risk Assessment and Management atsushi@pu ⁻ hiroshima.ac.jp	Our study has focused on microbial safety and sanitation of drinking water. We have studied about widely water environment such as river water, sea area, sewages and water treatment process including disinfection. The microorganisms to be studied in our laboratory are also widely types with protozoa (<i>Cryptosporidium</i>), virus (Nov, PMMoV) and bacteria (<i>C.</i> <i>perfringens, E. coli, L. pneumophila</i> and Enterococci).	 The rapid detection of indicator bacteria, intestinal virus and protozoa (<i>Cryptosporidium</i>) from various water environments using molecular biological assay. Especially, developing new <i>Cryptosporidium</i> antibody for specific and easy detection of oocysts from water samples. Enterotoxin gene positive A type <i>C. perfringens</i> spores as a microbial fecal source tracking indicator. Intestinal virus and its indicators (NoV, PMMoV etc. detection/quantification from water environments using q-PCR and its fate under various water environment such as river, sea, sewage and water treatment include disinfection. Quantitative Microbial Risk Assessment (QMRA).
	Prof.	Hiroyuki HARADA Environmental Systems Engineering ho-harada@pu-hiroshima.ac.jp	For environmental maintenance and restoration, we study technique as construct system of the eco-friendly most suitable process using combination of elemental technologies.	 A study on recovery of the exhaustion related resources which utilized unused disposal biomass A study on adsorption of the hydrogen sulfide which utilized a natural mineral A study on environmental conservation of the tideland

Field	Position	Name • Subject(Class) Email	Outline of Research	Research Topics
Environmental Science	Prof.	Yoshiharu MITOMA Instrumental Analysis of the Environment mitomay@pu-hiroshima.ac.jp	Applied research on proper disposal of waste materials aimed at creation and promotion of a recycling-oriented society, with basic studies of green processes via heterogeneous catalysis.	 Energy-saving detoxification systems for endocrine-disrupting chemicals. Biomass conversion into useful materials using environmentally-friendly chemical reactions. Synthetic organic reactions in water and their mechanisms.
	Prof.	Seiichiro YONEMURA Atmospheric Environment yone@pu-hiroshima.ac.jp	Studying interactions between atmosphere and biosphere	 Monitoring of atmospheric environment and bio-meteorology Gas exchange of permafrost soil Emission mechanisms of N₂O and NO from soil. Plant gas exchange Measurements of degradation rates of bio- film and soil carbon in soil Dynamics of earthworms through gas exchange Modeling the processes listed above.
	Prof.	Yegui XIAO Adaptive and intelligent signal processing for environmental systems (DC) xiao@pu-hiroshima.ac.jp	Adaptive analysis and processing of signals and noises are indispensable in various areas such as digital communications, environmental and economic systems etc. Advanced theory and systems of adaptive and intelligent signal processing will be explained in some detail in this course to extend your knowledge and research scope and to enhance your ability to benefit from sophisticated DSP technologies.	 Adaptive noise canceller and application to fetal ECG extraction and speech recovery Development of high-performance and low-cost active noise control systems for real-life applications Vibration detection, monitoring, and fault diagnosis Analysis and prediction of time-series data from earthquakes, solar radiation, and economic system using soft computing techniques including deep learning based neural networks Constructive neural networks and application to real-world problems
	Prof.	Hugang HAN Intelligent Control of Environmental Systems (DC) hhan@pu-hiroshima.ac.jp	On the basis of system control and fuzzy control theories, we focus our attentions on the fuzzy modellings of a range of environmental issues, particularly in the case of urban rivers. Then we try to give and verify some measures in order to resolve problems in the environmental issues concerned using the models we achieved.	 Water quality modelling of an urban river and development of fuzzy water quality prediction model T⁻S/polynomial fuzzy control system in consideration of modelling error and its application to intelligent environmental systems System disturbance observer and its applications to control systems.

Field	Position	Name • Subject(Class) Email	Outline of Research	Research Topics
Environmental Science	Assoc. Prof.	Mitsuru AOYAGI Chemistry of Environmental Macromolecules aoyagi@pu-hiroshima.ac.jp	 Structural analyses and characterization of macromolecular materials derived from components of lignocellulosics. Applications of these materials are also tried based on properties under molecular level. Analyses of macromolecular materials based on physical chemistry. 	 Photochemical analyses of variations in condensed structures of several lignin derivatives. Investigations on physical properties of lignin-based polymeric materials. Investigations and applications of lignocellulosic composites with chemical modifications. Synthesis and analysis of sustainable macromolecules directly from lignocellulosic materials.
	Assoc. Prof.	Kensuke KOBAYASHI Environmental Management kensuke@pu-hiroshima.ac.jp	Research for environmental load reduction on various subjects including services and socio- economic systems based on lifecycle thinking; thus to contribute to sustainable, lower-emission society; with the efforts for LCA study by creating emission intensity databases and evaluation methods plus verifying the results.	 Utilization of resources (e.g. building materials) Study for reduction of environmental load Enhancement of LCA emission intensity database management Efforts for higher accuracy of LCA activities
	Assoc. Prof.	Kanako NAITO Hydrospheric Environmental Chemistry naito@pu-hiroshima.ac.jp	We study the role of trace metals, especially iron, on phytoplankton in hydrospheres. We investigate the mechanisms of red tide outbreaks in coastal area, and develop effective strategies to combat the theat of harmful algal blooms through management and mitigation.	 Elucidation of iron uptake mechanism by eukaryotic phytoplankton Elucidation of physiological and ecological specificity of microalgae causing red tides Study on seasonal dynamics of microalgae and trace metals in hydrospheric environments Development of a chemically defined artificial medium for harmful algae
	Assoc. Prof.	Jun NISHIMOTO Inorganic Analytical Chemistry nishimoj@pu-hiroshima.ac.jp	Research on separation for hazardous and useful substances by solvent extraction, solid phase extraction, ion exchange and precipitation. Research on behavior of inorganic substances in environmental.	 Recovery of metals in ash and wastewater Behavior of inorganic substances in tidal flat of Ariake bay